

Lepton flavour universality tests at LHCb

57th Recontres de Moriond 2023 - QCD and high energy interactions

La Thuile 28th March, 2023

<u>Alex Seuthe</u> (alex.seuthe@cern.ch)

Technische Universität Dortmund On behalf of the LHCb Collaboration

Table of contents

- 1. Introduction
- 2. Lepton Flavour Universality at the LHCb detector
- 3. Lepton flavour universality tests with $b \to c \ell \nu$ decays
- 4. Lepton flavour universality tests with $b \to s\ell^+\ell^-$ decays
- 5. Conclusion

Introduction

Introduction

- Lepton flavour universality (LFU) in the SM: electroweak couplings are independent of lepton flavours
- Verified on tree-level with EM interactions, Z and light quark decays
- New physics particles could lead to a violation of LFU
- At LHCb: Tests of LFU with semileptonic $b \to c\ell\nu$ and rare $b \to s\ell^+\ell^-$ decays in the heavy quark sector

Lepton flavour universality tests at LHCb

Lepton Flavour Universality at the LHCb detector

LHCb detector (Run 1 and 2)

- Precise b hadron identification through displaced vertex reconstruction $\sigma_{IP} = 15 \pm 29 p_T/\text{mm}$
- Low transverse momentum triggers
- Precise tracking detectors with dipole magnet $\sigma_p/p \sim 0.5\,\%$
- PID system: calorimeters, muon system, cherenkov detectors

- e: emit bremsstrahlung, high occupancy in ECAL, lower reconstruction efficiency
- \cdot μ : negligible bremsstrahlung, low occupancy, high reco. efficiency
- \cdot au: challenging to reconstruct because of neutrinos

Lepton flavour universality tests

with $b \to c\ell\nu$ decays

LFU with $b \to c\ell\nu$ overview

- Allowed charged tree-level current with large decay rates
- · LHCb: study ratios R_{Hc} with au and μ

$$R_{H_c} = \frac{\mathcal{B}(H_b \to H_c \tau \nu_{\tau})}{\mathcal{B}(H_b \to H_c \mu \nu_{\mu})}$$

with
$$H_b=B^0,B^+,\Lambda_b,...$$

and $H_c=D^{*,+},D^0,D^+,\Lambda_c,J/\psi,...$

- Advantages: remove dependency on |V_{cb}|, reduction of experimental and theoretical uncertainties
- * Possible sensitivity of $R_{H_{\rm c}}$ to BSM couplings of third lepton generation with, e.g., leptoquarks, charged Higgs, W'

- \cdot $H_b
 ightarrow H_c au
 u_ au$ can further decay with
 - · "Hadronic": $au^- o \pi^- \pi^+ \pi^- (\pi^0)
 u_ au$
 - · "Muonic": $au^- o \mu^- \overline{
 u}_\mu
 u_ au$
- Long standing deviation from SM prediction of R_{D^0} and R_{D^*} at 3σ level [e.g. Eur. Phys. J. C77 (2017) 895]

Simultaneous measurement of R_{D^*} and R_{D^0} [arXiv:2302.02886 (submitted to PRL)]

· New: First simultaneous measurement of

$$R_{D(*)} = \frac{\mathcal{B}(\bar{B} \to D^{(*)}\tau^{-}\bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^{(*)}\mu^{-}\bar{\nu}_{\mu})}$$

with
$$au o \mu \overline{
u}_{\mu} \overline{
u}_{ au}$$
 and $extit{D}^* o \overline{ ilde{D}} (o \pi \textit{K}) \pi$

- · Using LHCb Run 1 data
- Before: $R(D^*)$ with Run 1 $D^{*+}\mu^-$ data with 2.1 σ deviation from SM prediction [PRL 115, 111803]
- Now: higher branching fractions and efficiency using $D^0 \mu^-$ sample 5× bigger than $D^{*+} \mu^-$

- · Reconstruction challenges:
 - · 3 neutrinos: spread out peaks in any distribution
 - Backgrounds: $B \to D^{**}$, $B \to DDX$, mis-ID, combinatorial
 - · Select muonic au decays only
- · Select ${\it D}^0\mu^+$ or ${\it D}^*\mu^+$
- Template fit with $m_{miss}^2 = (p_B p_{D(*)} p_{\mu})^2$, $q^2 = (p_B p_{D(*)})^2$ and E_{μ}^* :

Simultaneous measurement of R_{D^*} and R_{D^0} [arXiv:2302.02886 (submitted to PRL)]

Result

- $R_{D^*} = 0.281 \pm 0.018 \pm 0.024$
- $R_{D^0} = 0.441 \pm 0.060 \pm 0.066$
- Correlation $\rho = -0.43$
- 1.9 σ agreement with SM
- Largest systematic uncertainty due to limited data and simulation samples
- New preliminary average: slightly lower R_{D^*} , slightly higher R_{D^0}
- 3.3 σo 3.5 σ agreement with SM

R_{D^*} with hadronic au decays [LHCb-PAPER-2022-052 (In preparation), CERN seminar talk]

- · Last week: R_{D^*} with $au^- o \pi^+ \pi^- \pi^- (\pi^0)
 u_ au$
- Adding 2015 + 2016 data to LHCb Run 1 analysis [PRL 120 171802 (2018),PRD 97 072013 (2018)]
- Normalisation mode with same **visible** three-prong final state : $B^0 \to D^{*-}3\pi^{\pm}$

$$\mathcal{K}(D^*) = \frac{\mathcal{B}(B^0 \to D^{*-}\tau^+\nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-}3\pi^{\pm})} = \frac{N_{\text{Sig.}}}{N_{\text{Norm.}}} \cdot \frac{\epsilon_{\text{Norm.}}}{\epsilon_{\text{Sig.}}} \cdot \frac{1}{\mathcal{B}(\tau^+ \to 3\pi^{\pm}(\pi^0)\overline{\nu_{\tau}})}$$

$$R(D^*) = \mathcal{K}(D^*) \cdot \frac{\mathcal{B}(B^0 \to D^{*-}3\pi^{\pm})}{\mathcal{B}(B^0 \to D^{*-}\mu^+\nu_{\mu})}$$

* 3D template fit with $q^2 \equiv (p_{B^0}-p_{D^*})^2,\, \tau^+$ decay time, τ vs. $D_{\rm s}^+$ BDT output

• Result: $R_{D^*} = 0.257 \pm 0.012 \text{(stat.)} \pm 0.014 \text{(syst.)} \pm 0.012 \text{(ext.)}$

- New preliminary world average: $R_{D^*} = 0.284 \pm 0.013 \ {\rm and} \ R_{D^0} = 0.356 \pm 0.029$
- * Global discrepancy to the SM for $R_{D^0}-R_{D^*}$ at 3.2σ

$R_{J/\psi}$ and R_{Λ_c} with LHCb Run 1 data [PRL 120 121801 (2018), PRL 128 191803 (2022)]

$$R_{J/\psi} = \frac{\mathcal{B}(B_c^+ \to J/\psi \tau^+ \nu_\tau)}{\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_\mu)}$$

with leptonic decay $au^+ o \mu^+
u_\mu \overline{
u}_ au$

- First LFU test with B_c^+ mesons
- Finding of $B_c^+ \to J/\psi \tau^- \overline{\nu}_{\tau}$ with 3σ
- · Determine form factors from fits to data
- 3D binned template fit to: $\tau_{B_c^+}$, $m_{\text{miss.}}^2 = (p_{B_c^+} p_{l/\psi} p_{\mu})^2$, $(E_{\mu}^*, q^2 = (p_{B_c^+} p_{\mu}^2))$
- Main systematics: sample sizes and form factors

Results

- $R_{J/\psi} = 0.71 \pm 0.17$ (stat.) ± 0.18 (syst.)
- $R_{J/\psi, {\rm SM}} = 0.2583 \pm 0.0038$ [PRL 125 222003 2020]
- Result 2σ above SM prediction

$$R_{\Lambda_c} = \frac{\mathcal{B}(\Lambda_b \to \Lambda_c^+ \tau^- \overline{\nu}_\tau)}{\mathcal{B}(\Lambda_b \to \Lambda_c^+ \mu^- \overline{\nu}_\mu)}$$

with hadronic decay $au^- o \pi^- \pi^+ (\pi^0)
u_ au$

- First LFU test with baryonic $b \to c \ell \nu$ decays
- Largest systematic uncertainty from background template shapes
- Fit variables: t_{τ} , squared invariant dilepton mass q^2 , BDT output for $\Lambda_b^0 \to \Lambda_c^+ \tau^- \overline{\nu}_{\tau}$

Results

- $\cdot R_{\Lambda_c^+} = 0.242 \pm 0.026 \text{ (stat.)} \pm 0.040 \text{ (syst.)} \pm 0.059 \text{ (ext.)}$
- $\cdot R_{\Lambda_c^+,SM} = 0.324 \pm 0.004 [PRD 99 055008]$
- · 1 σ agreement with SM prediction

Lepton flavour universality tests

with $b \to s\ell^+\ell^-$ decays

LFU with $b \to s\ell^+\ell^-$ overview

* Rare FCNC $b \to s \ell^+ \ell^-$ decays only at loop level: sensitive to NP

- Use ratios of $b \to s \ell^+ \ell^-$ decays with many possible final states

$$R_{H} = \frac{\int_{q_{min}^{2}}^{q_{max}^{2}} \frac{d\mathcal{B}(B \to H\mu^{+}\mu^{-})}{dq^{2}} dq^{2}}{\int_{q_{min}^{2}}^{q_{max}^{2}} \frac{d\mathcal{B}(B \to He^{+}e^{-})}{dq^{2}} dq^{2}}$$

 Except different Yukawa couplings and kinematic effects ratios are precisely expected to be unity [PRD 69 (2004) 074020]

- Effective Hamiltonian $\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\sum_i C_i \mathcal{O}_i$
- · Study different regions of $q^2=m^2(\ell^+\ell^-)$
- Decay spectrum of $b \to \mathrm{s} \ell^+ \ell^-$ processes

Alex Seuthe (LHCb) - Lepton flavour universality tests at LHCb - Moriond QCD - 28th March, 2023

R_K and R_{K^*} [arXiv:2212.09153 (submitted to PRD), arXiv:2212.09152 (submitted to PRL)]

- Simultaneous measurement of R_K and R_{K^*} for all years of LHCb data taking in two q^2 regions
 - Low: $q^2 \in [0.1, 1.1] \text{ GeV}^2/c^4$
 - Central: $q^2 \in [1.1, 6.0] \text{ GeV}^2/c^4$

- Constrain cross-feed background between two modes in fits to data
- Calibrate simulation with $B^{+/0} \to K /\!\!/ \psi (\to \ell^+ \ell^-)$ decays: decouple from normalisation mode and enable cross-validation

Measurement strategy to cancel systematic uncertainties

$$\begin{split} R_{X} &= \frac{\mathcal{B}(B \to K\mu^{+}\mu^{-})}{\mathcal{B}(B \to Ke^{+}e^{-})} \times \underbrace{\frac{\mathcal{B}(B \to KJ/\psi(\to e^{+}e^{-}))}{\mathcal{B}(B \to KJ/\psi(\to \mu^{+}\mu^{-}))}}_{=1} \\ &= \underbrace{\left(\frac{\mathcal{N}_{K\mu^{+}\mu^{-}}}{\mathcal{N}_{Ke^{+}e^{-}}}\right) \left(\frac{\mathcal{N}_{KJ/\psi(\to e^{+}e^{-})}}{\mathcal{N}_{KJ/\psi(\to \mu^{+}\mu^{-})}}\right)}_{\text{Mass fits to LHCb data}} \times \underbrace{\left(\frac{\epsilon_{Ke^{+}e^{-}}}{\epsilon_{K\mu^{+}\mu^{-}}}\right) \left(\frac{\epsilon_{KJ/\psi(\to \mu^{+}\mu^{-})}}{\epsilon_{KJ/\psi(\to e^{+}e^{-})}}\right)}_{\text{Calibrated simulation samples}} \end{split}$$

R_K and R_{K^*} [arXiv:2212.09153 (submitted to PRD), arXiv:2212.09152 (submitted to PRL)]

- Mis-ID background: stringent PID requirements for leptons and hadrons
- Multivariate classifiers against partially reconstructed and combinatorial background
- Veto physical backgrounds

Validation with charmonium modes:

$$r_{J/\psi} = \frac{\mathcal{B}(B \to KJ/\psi(\to \mu^+\mu^-))}{\mathcal{B}(B \to KJ/\psi(\to e^+e^-))} \equiv 1$$

$$R_{\psi(2S)} = \frac{\mathcal{B}(B \to K\psi(2S)(\to \mu^+\mu^-))}{\mathcal{B}(B \to K\psi(2S)(\to e^+e^-))} \cdot \frac{\mathcal{B}(B \to KJ/\psi(\to e^+e^-))}{\mathcal{B}(B \to KJ/\psi(\to \mu^+\mu^-))}$$

• Trigger independent of $K(\pi)\ell^+\ell^-$ signal as main category to align efficiencies between e and μ modes

[arXiv:2212.09153]

R_K and R_{K^*} [arXiv:2212.09153 (submitted to PRD), arXiv:2212.09152 (submitted to PRL)]

- $J\!/\!\psi$ bremsstrahlung tails constrained in rare electron mode fits
- Partially reconstructed $K^{*0}e^+e^-$ background constrained in $K^+e^+e^-$ fit

[arXiv:2212.09153]

Muon mode consistent to previous analyses

• R_{K} and $R_{K^{*}}$ consistent with SM prediction at 0.2σ

- + Highest precision of LFU test with $b \to s \ell^+ \ell^-$ decays today
- Measurement statistically dominated
- · Result supersedes previous LHCb measurements

R_{pK} [JHEP 2020 40 (2020)]

· First LFU test in baryonic sector

$$R_{pK} = \frac{\mathcal{B}(\Lambda_b^0 \to pK^- \mu^+ \mu^-)}{\mathcal{B}(\Lambda_b^0 \to pK^- e^+ e^-)}$$

· Test spin dependence of possible NP

· Using LHCb Run 1 and 2016 data

Results

- $R_{pK}^{[0.1,6.0]} = 0.86_{-0.11}^{+0.14} \text{(stat.)} \pm 0.05 \text{(syst.)}$
- \cdot In agreement with unity within 1 σ
- $r_{J/\psi}^{-1} = 0.96 \pm 0.05$
- $R_{\psi(2S)}$ compatible with unity

$R_{K^{*+}}$ and $R_{K_0^0}$ [PRL 128 191802 (2022)]

- Using Run 1 + 2 LHCb data set with $B^+ \to K^{*+} (\to K^0_S \pi) \ell^+ \ell^-$, $(\ell = \mu, e)$
- First observation of $B^+ \to K^{*+}e^+e^-$

Result

- $\cdot R_{K^{*+}}^{[0.045,6.0]} = 0.70_{-0.13}^{+0.18} \text{ (stat.)}_{-0.04}^{+0.03} \text{ (syst.)}$
- \cdot Compatible with unity within 1.4 σ
- $r_{J/\psi}^{-1} = 0.965 \pm 0.011 \text{ (stat.)} \pm 0.032 \text{ (syst.)}$
- $R_{\psi(2S)}^{-1}$ compatible with unity

- Using Run 1 + 2 LHCb data set with $B^0 \to K^0_{\rm S} \ell^+ \ell^-$, $(\ell=\mu,e)$
- · First observation of $B^0 \to K_S^0 e^+ e^-$

Result

- $R_{K^{*+}}^{[1.0,6.0]} = 0.66_{-0.14}^{+0.20} \text{ (stat.)}_{-0.04}^{+0.02} \text{ (syst.)}$
- Compatible with SM within 1.5 σ
- $r_{J/\psi}^{-1} = 0.977 \pm 0.008 \text{ (stat.)} \pm 0.027 \text{ (syst.)}$
- $R_{\psi(2S)}^{-1}$ compatible with unity

Conclusion

Prospects and conclusion

· LFU tests with $c\ell\nu$ transitions

- First simultaneous measurement of R_{D^0} and R_{D^*} with muonic au decays at LHCb
- Very recent update of R_{D*} hadronic with 2015 2016 LHCb dataset
- Global picture for R_{D^0} - R_{D^*} combination unchanged with SM tension at 3σ level
- More measurements are in the pipeline: R_{D_s} , R_{D^+} , R_{D^*} with $e-\mu$, $R_{D^{**}}$,...

• LFU tests with $b \to s\ell^+\ell^-$ transitions

- \cdot R_K and R_K^* are the most precise and accurate LFU tests today
- \cdot These results are compatible with the SM within 0.2σ
- Many more analyses and updates in the pipeline: R_{ϕ} , R_{Λ} , R_{pK} , $R_{K\pi\pi}$,...
- · Anomalies in differential branching fractions and angular analyses of the muon modes remain
- Commissioning of LHCb Upgrade I detector ongoing, increased inst. lumi. by factor 5, plan to collect \sim 50 fb⁻¹ of data in Run 3

Backup

R_{D^*} with hadronic τ decays - Fit projections

[LHCb-PAPER-2022-052]

· Distributions of the fit variables in the $B^0 o D^{*0} au^+
u_ au$ data sample with the fit result overlaid.

Alex Seuthe (LHCb) - Lepton flavour universality tests at LHCb - Moriond QCD - 28th March, 2023

$R_{l/l}$ with LHCb Run 1 data - Fit projections

LHCb

 $Z(q^2, E_u^*)$

Alex Seuthe (LHCb) - Lepton flavour universality tests at LHCb - Moriond OCD - 28th March, 2023

R_{Λ_c} with LHCb Run 1 data - Fit projections

[PRL 128 191803 (2022)]

Alex Seuthe (LHCb) - Lepton flavour universality tests at LHCb - Moriond QCD - 28th March, 2023